The H-R Diagram: M11

Erica Robles UC Davis COSMOS

Cluster 9: Introduction to Astrophysics August 4, 2011

H-R Diagrams

- show relationship between stars' luminosities and spectral type
- y-axis= Luminosity
- x-axis= Temperature
- Cooler (redder)stars are farther to the right on the x-axis
- Hotter(bluer) stars are closer to the left on the x-axis
- Stars with higher luminosities are higher up on the y-axis
- Help determine mass of a star using luminosity
- Help determine ages of star clusters

H-R Diagrams (cont.)

© Copyright 2002, Jim Loy

Ejner Hertzsprung

 Danish astronomer who claimed that there must be a connection between the spectrum and the luminosity of stars

Henry Norris Russell

 Russell was an American astronomer who had similar ideas about the stars as
 Hertzsprung did, but he plotted the magnitude of the stars and their spectral types

Stellar Evolution

- Process by which pressure (gravity) alters stars
- Time scale of stellar evolution depends on mass of the star
- Stages: birth, main sequence, red giant branch, planetary nebula or supernova, remnants

Stellar Evolution(cont.)

How Stars Form

- Form from gas and dust condensing in space
- Dense parts of molecular clouds collapse to form a ball of plasma to form a protostar

Main Sequence

-Star spends ~90% of life time here

-Stable stars because of Hydrostatic Equilibrium -Hydrostatic Equilibrium: pressure of fluid at rest is due to the weight of the overlying fluid -Fusing hydrogen to helium in core -Star collapses due to thermal equilibrium unbalance

Turn-off Point

- The point where stars move to the red giant branch
- Thermal Equilibrium unbalances as a star depletes its supply of hydrogen in the core

Red Giant Branch

Accelerated fusion in the hydrogen containing layer s causes the star to expand
Gravitational pull is reduced from the layers

The Sun

5800 K

-Layers expand faster than the energy production
-Stars become cooler(redder) than when they were on the main sequence

-More massive stars become supergiants

Smallest Kepler red giant

5000 K

Transitions

- Stars whose masses are similar to the sun go onto the horizontal branch after leaving the red giant branch
- Luminosity decreases in stars masses similar to the sun
- A horizontal branch star is powered by helium fusion in the core

Remnants

- Low mass stars: become red dwarfs because star doesn't have enough mass from the stellar envelope to exert enough pressure on the core
- Mid-sized stars: star becomes a planetary nebula & then turns into a white dwarf, which is the core of a star that has died
- High-mass stars: usually become supernovae then a neutron star or black hole
- White dwarfs result from stars that had a great enough mass to become a neutron star & have died

Remnants(cont.)

M11

H-R Diagram of M11

Process

- Use CCD Soft to reduce, align & combine the images taken
- After the images were reduced, aligned & combined, the magnitudes were found
- Use source extractor(SExtractor) to build catalogues of objects in the images
- Python, a computer programming language, was used to graph the data in order to make to make the H-R diagram

Process(cont.)

Python

🔳 pylab	
In [120]: y	ylabel("apparent B mag")
Out[120]: <	(matplotlib.text.Text object at 0x07869AB0>
In [121]: > Out[121]: <	<pre><label("b-r") (matplotlib.text.text="" 0x076c6fb0)<="" at="" object="" pre=""></label("b-r")></pre>
In [122]: 1	pabs = bmag-12.4
In [123]: P	rabs = rmag-12.4
In [124]: s	scatter(bmag-rmag,babs); xlim(-5,5); ylim(5,-5)
Out[124]: {	(matplotlib.collections.CircleCollection object at 0x07A8C330)
Out[124]: {	(-5, 5)
Out[124]: {	(5, -5)
In [125]: y	ylabel("absolute B mag")
Out[125]: <	(matplotlib.text.Text object at 0x079FB4D0)
In [126]: >	<label<"b-r"></label<"b-r">
Out[126]: <	(matplotlib.text.Text object at 0x07A079D0>
In [127]: y	ylabel("Absolute B mag")
Out[127]: <	(matplotlib.text.Text object at 0x079FB4D0)
In [128]:	

CCD Soft

Results

- Distance=1,600 pc
- Actual=1,900 pc

References

- (2007).Galactic Star Clusters. Retrieved from http://www.astro.lsa.umich.edu/undergrad/Labs/clusters/cl_intro_ageOnly.html
- (2008). Introduction to the H-R Diagram. Retrieved from <u>http://chandra.harvard.edu/edu/formal/stellar_ev/story/index3.html</u>
- Percy, J.R. (2007) *UnderstandingVariable Stars*. New York, NY: Cambridge University Press
- Smith, G. (n.d.) Stellar Evolution II: Massive Stars. Retrieved from <u>http://casswww.ucsd.edu/archive/public/tutorial/StevII.html</u>

Pictures Cited

http://deepinuniverse.blogspot.com/2011/01/life-cycle-of-star-stellar-evolution.html http://www.jimloy.com/astro/hr.htm http://www.starrywonders.com/m67.html http://www.newclassd.com/index.php?page=36 ttp://library.thinkquest.org/05aug/00108/mainsequence_frameset.htm http://www.space.com/11261-starquakes-giant-stars-pulse-sun.html http://tmp.kiwix.org:4201/A/Stellar_evolution.html http://tmp.kiwix.org:4201/A/Stellar_evolution.html http://www2.astro.psu.edu/users/stark/outreach/StarLives/life+death/ http://essayweb.net/astronomy/blackhole.shtml http://www.ngawhetu.com/Resources/StellarEvolution/index04.html http://www.ira.inaf.it/Library/slides-archive/page14.html